mirror of
https://github.com/kunkunsh/kunkun-ext-rag.git
synced 2025-04-04 02:16:41 +00:00
120 lines
3.7 KiB
TypeScript
120 lines
3.7 KiB
TypeScript
import { FaissStore } from "@langchain/community/vectorstores/faiss";
|
|
import { ChatOpenAI, OpenAIEmbeddings } from "@langchain/openai";
|
|
import { Document } from "@langchain/core/documents";
|
|
import { ChatPromptTemplate } from "@langchain/core/prompts";
|
|
import { pull } from "langchain/hub";
|
|
import { Annotation, StateGraph } from "@langchain/langgraph";
|
|
import { RecursiveCharacterTextSplitter } from "@langchain/textsplitters";
|
|
import { DirectoryLoader } from "langchain/document_loaders/fs/directory";
|
|
import fs from "node:fs";
|
|
import "jsr:@std/dotenv/load";
|
|
import {
|
|
JSONLoader,
|
|
JSONLinesLoader,
|
|
} from "langchain/document_loaders/fs/json";
|
|
import { TextLoader } from "langchain/document_loaders/fs/text";
|
|
|
|
export const embeddings = new OpenAIEmbeddings({
|
|
model: "text-embedding-3-large",
|
|
});
|
|
async function getVectorStore(): Promise<FaissStore> {
|
|
// if ./FaissStore dir exists, load it
|
|
if (fs.existsSync("./FaissStore")) {
|
|
return FaissStore.load("./FaissStore", embeddings);
|
|
}
|
|
|
|
const loader = new DirectoryLoader(
|
|
"/Users/hk/Dev/kunkun-extension-repos/kunkun-ext-rag/deno-src/buckets",
|
|
// "/Users/hk/Dev/kunkun-docs/src/content/docs",
|
|
{
|
|
".json": (path) => new JSONLoader(path, "/texts"),
|
|
".jsonl": (path) => new JSONLinesLoader(path, "/html"),
|
|
".txt": (path) => new TextLoader(path),
|
|
".md": (path) => new TextLoader(path),
|
|
".mdx": (path) => new TextLoader(path),
|
|
}
|
|
);
|
|
const docs = await loader.load();
|
|
// console.log(docs);
|
|
|
|
const splitter = new RecursiveCharacterTextSplitter({
|
|
chunkSize: 1000,
|
|
chunkOverlap: 200,
|
|
});
|
|
const allSplits = await splitter.splitDocuments(docs);
|
|
|
|
const vectorStore = new FaissStore(embeddings, {});
|
|
await vectorStore.addDocuments(allSplits);
|
|
|
|
// Save the vector store to disk
|
|
await vectorStore.save("./FaissStore");
|
|
return vectorStore;
|
|
}
|
|
|
|
// Add this new function to delete documents
|
|
async function deleteDocuments(vectorStore: FaissStore, ids: string[]) {
|
|
await vectorStore.delete({ ids });
|
|
// Save the updated store
|
|
await vectorStore.save("./FaissStore");
|
|
}
|
|
|
|
const vectorStore = await getVectorStore();
|
|
|
|
const llm = new ChatOpenAI({
|
|
model: "gpt-4o-mini",
|
|
temperature: 0,
|
|
});
|
|
|
|
// Define prompt for question-answering
|
|
const promptTemplate = await pull<ChatPromptTemplate>("rlm/rag-prompt");
|
|
|
|
// Define state for application
|
|
const InputStateAnnotation = Annotation.Root({
|
|
question: Annotation<string>,
|
|
});
|
|
|
|
const StateAnnotation = Annotation.Root({
|
|
question: Annotation<string>,
|
|
context: Annotation<Document[]>,
|
|
answer: Annotation<string>,
|
|
});
|
|
|
|
// Define application steps
|
|
const retrieve = async (state: typeof InputStateAnnotation.State) => {
|
|
const retrievedDocs = await vectorStore.similaritySearch(state.question);
|
|
return { context: retrievedDocs };
|
|
};
|
|
|
|
const generate = async (state: typeof StateAnnotation.State) => {
|
|
const docsContent = state.context.map((doc) => doc.pageContent).join("\n");
|
|
const messages = await promptTemplate.invoke({
|
|
question: state.question,
|
|
context: docsContent,
|
|
});
|
|
const response = await llm.invoke(messages);
|
|
return { answer: response.content };
|
|
};
|
|
|
|
// Compile application and test
|
|
const graph = new StateGraph(StateAnnotation)
|
|
.addNode("retrieve", retrieve)
|
|
.addNode("generate", generate)
|
|
.addEdge("__start__", "retrieve")
|
|
.addEdge("retrieve", "generate")
|
|
.addEdge("generate", "__end__")
|
|
.compile();
|
|
|
|
let inputs = { question: "What is Task Decomposition?" };
|
|
|
|
while (true) {
|
|
const question = prompt("Enter your question (or 'exit' to quit): ");
|
|
if (!question || question.toLowerCase() === "exit") {
|
|
break;
|
|
}
|
|
|
|
const result = await graph.invoke({ question });
|
|
console.log("\nAnswer:");
|
|
console.log(result.answer);
|
|
console.log("\n-------------------\n");
|
|
}
|