feat: implement UI for adding database

This commit is contained in:
Huakun Shen 2025-01-27 02:38:50 -05:00
parent 464edfe0df
commit 6665dccc2b
No known key found for this signature in database
22 changed files with 2360 additions and 284 deletions

View File

@ -1,69 +1,5 @@
# Kunkun Custom UI Extension Template (SvelteKit)
# Kunkun RAG Extension
[Custom UI Extension Documentation](https://docs.kunkun.sh/extensions/custom-ui-ext/)
RAG means Retrieval-Augmented Generation.
This is a template for a custom UI extension.
This type of extension is basically a static website. You can use any frontend framework you like, this template uses [SvelteKit](https://svelte.dev/).
It is assumed that you have some knowledge of frontend development with SvelteKit.
## Development
Development is the same as developing a normal website.
```bash
pnpm install
pnpm dev
pnpm build
```
- To develop and preview the extension in Kunkun, you need to run the `Add Dev Extension` command in Kunkun, and register this extension's path.
In `package.json`, `"devMain"` is the url for development server, and `"main"` is the path to static `.html` file for production.
To load the extension in development mode, you have to enable it with `Toggle Dev Extension Live Load Mode` command in Kunkun. A `Live` badge will be shown on the commands. This indicates that dev extensions will be loaded from `devMain` instead of `main`.
## Advanced
### Rendering Mode
This is a Meta-Framework template, and already configured with SSG rendering mode.
Please do not enable SSR unless you know what you are doing.
There will not be a JS runtime in production, and Kunkun always load the extension as static files.
The main benefit of using a meta-framework is that it comes with routing, and will output multiple `.html` files, which makes multi-command support much easier.
## Verify Build and Publish
```bash
pnpm build # make sure the build npm script works
npx kksh@latest verify # Verify some basic settings before publishing
```
It is recommended to build the extension with the same environment our CI uses.
The docker image used by our CI is `huakunshen/kunkun-ext-builder:latest`.
You can use the following command to build the extension with the same environment our CI uses.
This requires you to have docker installed, and the shell you are using has access to it via `docker` command.
```bash
npx kksh@latest build # Build the extension with
```
`pnpm` is used to install dependencies and build the extension.
The docker image environment also has `node`, `pnpm`, `npm`, `bun`, `deno` installed.
If your build failed, try debug with `huakunshen/kunkun-ext-builder:latest` image in interative mode and bind your extension volume to `/workspace`.
After build successfully, you should find a tarball file ends with `.tgz` in the root of your extension.
The tarball is packaged with `npm pack` command. You can uncompress it to see if it contains all the necessary files.
This tarball is the final product that will be published and installed in Kunkun. You can further verify your extension by installing this tarball directly in Kunkun.
After verifying the tarball, it's ready to be published.
Fork [KunkunExtensions](https://github.com/kunkunsh/KunkunExtensions) repo, add your extension to the `extensions` directory, and create a PR.
Once CI passed and PR merged, you can use your extension in Kunkun.
This extension is a local RAG app, that allows you to index a local directory of files and search them using a LLM model.

BIN
bun.lockb

Binary file not shown.

180
deno-src/bucket.ts Normal file
View File

@ -0,0 +1,180 @@
import { FaissStore } from "@langchain/community/vectorstores/faiss";
import { OpenAIEmbeddings } from "@langchain/openai";
import * as v from "valibot";
import * as path from "jsr:@std/path";
import { existsSync } from "node:fs";
import { Document } from "@langchain/core/documents";
import { RecursiveCharacterTextSplitter } from "@langchain/textsplitters";
import { DirectoryLoader } from "langchain/document_loaders/fs/directory";
import {
JSONLoader,
JSONLinesLoader,
} from "langchain/document_loaders/fs/json";
import { TextLoader } from "langchain/document_loaders/fs/text";
import { computeSha256FromText } from "./crypto.ts";
import { PDFLoader } from "@langchain/community/document_loaders/fs/pdf";
export const embeddings = new OpenAIEmbeddings({
model: "text-embedding-3-large",
});
export const MetadataSchema = v.object({
filesSha256: v.array(v.string()),
});
export type Metadata = v.InferOutput<typeof MetadataSchema>;
export async function getDocsFromDirectory(
directoryPath: string
): Promise<Document[]> {
const splitter = new RecursiveCharacterTextSplitter({
chunkSize: 1000,
chunkOverlap: 200,
});
const loader = new DirectoryLoader(directoryPath, {
".json": (path) => new JSONLoader(path, "/texts"),
".jsonl": (path) => new JSONLinesLoader(path, "/html"),
".txt": (path) => new TextLoader(path),
".md": (path) => new TextLoader(path),
".mdx": (path) => new TextLoader(path),
});
const docs = await loader.load();
const allSplits = await splitter.splitDocuments(docs);
return allSplits;
}
export class Bucket {
private readonly bucketPath: string;
private readonly faissStorePath: string;
private readonly metadataPath: string;
private _vectorStore: FaissStore | null = null;
filesSha256: Set<string> = new Set();
constructor(
private readonly bucketDir: string,
private readonly bucketName: string
) {
this.bucketPath = path.join(this.bucketDir, this.bucketName);
this.faissStorePath = path.join(this.bucketPath, "faiss-store");
this.metadataPath = path.join(this.bucketPath, "metadata.json");
}
async init() {
if (!existsSync(this.bucketPath)) {
Deno.mkdirSync(this.bucketPath, { recursive: true });
}
if (existsSync(this.metadataPath)) {
const metadata = JSON.parse(Deno.readTextFileSync(this.metadataPath));
const parsedMetadata = v.safeParse(MetadataSchema, metadata);
if (parsedMetadata.success) {
this.filesSha256 = new Set(parsedMetadata.output.filesSha256);
} else {
throw new Error("Invalid metadata");
}
}
this.updateMetadata();
this._vectorStore = await this.getVectorStore();
// if (this._vectorStore) {
// await this._vectorStore.save(this.faissStorePath);
// }
}
updateMetadata() {
const metadata: Metadata = {
filesSha256: Array.from(this.filesSha256),
};
Deno.writeTextFileSync(this.metadataPath, JSON.stringify(metadata));
}
async getVectorStore() {
if (
existsSync(this.faissStorePath) &&
existsSync(path.join(this.faissStorePath, "docstore.json"))
) {
const vectorStore = await FaissStore.load(
this.faissStorePath,
embeddings
);
return vectorStore;
}
// const vectorStore = await FaissStore.fromDocuments(docs, embeddings);
const vectorStore = new FaissStore(embeddings, {});
// await vectorStore.save(this.faissStorePath);
return vectorStore;
}
get vectorStore() {
if (this._vectorStore === null) {
throw new Error("Vector store not initialized");
}
return this._vectorStore;
}
private async addDocuments(documents: Document[]) {
await this.vectorStore.addDocuments(documents);
await this.vectorStore.save(this.faissStorePath);
}
private fillSha256(documents: Document[]) {
for (const doc of documents) {
const sha256 = computeSha256FromText(doc.pageContent);
doc.metadata.sha256 = sha256;
}
}
private getFilteredDocs(documents: Document[]) {
return documents.filter(
(doc) => !this.filesSha256.has(doc.metadata.sha256)
);
}
private updateSha256(docs: Document[]) {
for (const doc of docs) {
this.filesSha256.add(doc.metadata.sha256 as string);
}
this.updateMetadata();
}
async addDirectory(directoryPath: string) {
if (!existsSync(directoryPath)) {
throw new Error("Directory does not exist");
}
// check if path is a directory or file
const stats = Deno.statSync(directoryPath);
if (stats.isFile) {
throw new Error("Path is a file");
}
const docs = await getDocsFromDirectory(directoryPath);
this.fillSha256(docs);
const fileteredDocs = this.getFilteredDocs(docs);
for (const doc of fileteredDocs) {
this.filesSha256.add(doc.metadata.sha256 as string);
}
this.updateMetadata();
const splitter = new RecursiveCharacterTextSplitter({
chunkSize: 1000,
chunkOverlap: 200,
});
const allSplits = await splitter.splitDocuments(fileteredDocs);
await this.addDocuments(allSplits);
}
async addTextFile(filePath: string) {
const loader = new TextLoader(filePath);
const docs = await loader.load();
this.fillSha256(docs);
const fileteredDocs = this.getFilteredDocs(docs);
this.updateSha256(docs);
await this.addDocuments(fileteredDocs);
}
async addPDF(filePath: string) {
const loader = new PDFLoader(filePath);
const docs = await loader.load();
this.fillSha256(docs);
const fileteredDocs = this.getFilteredDocs(docs);
this.updateSha256(docs);
await this.addDocuments(fileteredDocs);
}
}

File diff suppressed because one or more lines are too long

Binary file not shown.

View File

@ -0,0 +1 @@
{"filesSha256":["bcecd6e1f4c1296ebaed37b2686a55485855bb3d04d71a16609297899ef89ba9","f67eb8d401f74305c8a4f21b2ac8986c1db3850aabe2753773ba00255fd4288c","61614a8362e20d8dc96bc8bcd52cd40b9bbf983c862253b9472f1044744bea02","f34a6fbd2e0f3fc1a1a8f3c019935e53e809d38b18fdab67ec742e02e3318a6f","e6929768ff182e0c6714a60157e94420c7942fa2cdad1f201a8302be9e86d064","b19540b04d609f5798e91d6de8ecd0fbbee9f7c3dfb008e2a198247241401c57","324d4f9a84e4849c002ae4091fe7614d2d00cb0bf4989574b307081669f9eb7a","0618796260fd0b8b4cc6daedbac59c06492a74eeebefbddf69fb13b2d2456da8","1a5d9b3ea54168ec8f89e1a93950b1d5c527c831b951070d3ffcce853c6e797f","0cc8092a90aa3f614a87258d372348706bc2f0d33e9235630849cb0aeec4342e","90ef40d14982b96bb2c4c657e17dbf74d8b15f1a36712d2759765c9e5de94995","ec62822e3eeffec14393b16a12d0dcb0920c11ad4fa1a3a6c59252ef39321c57","53f3b51bad507e0799121d30f1a96cb458d6caacda20ee6bd6447aa7a2041772","bc7551da68e709d023b76979f554252467465066285bb4c7aad07e05be82833c","a2fc83c128ebafcfc444c3740a3afcedc2e92b8c10f51724d41da57b8f670546","04c793bf24afcd608ecbbb3606ba1280602f02c678bb885b2e75f423ce394e22","3fe4c596a0bedd833fbe214081467647786a12561e3af0e4cd88a43c2787f35f","95f0df47bfd2b698f43aac7dc22ac13948fe093f838a25ab63c5f6f9b789d942","a9b8caefaa7a959928c587f74399a86549b7680894c1c882a631725a5252881e","ab68d62cb3631acf57b0704996303f2704730dd27fb30fd867092c8af90f4fb5","926688c2cc2bf5214f8ad2f82bdd68a630f0226118f50c54f8d618c2417f4c9f","4e52cee59ad6b3220e31dee7e2c9da499ce2f6c6a6a16305fefc4d05c0d63e08","c28379be7109e76bfccffcf7268b1e767c54e5f279179c773ddb33ba1a83717f","451ecba7690493bf70d26bf127bff2de09d7d5f0b51c16c363f3f372184a2988","f0b6f639135d28f12914f4fd9d8e7f11aa3c67e736cbbfbda36ec97f382b4577","a7516e047d1287385581727d5b019512288207bd2172bd241a0c6255d2b570c0","d67a47978e51dec70271dde449d9d38695a73c9787432379ab13a3b4ef78d7eb","ffbcb29742daf9184167d0e12e191e672b2d0662af402e8dfdea3f33117eb388","c19ae6410ab85759fbba1eb7c0ed49cb4f7a62759288ade5a287714e57f17823","a508c2976b25ed28733d26d2cd7601ee67aff3ad8cc0f1faf221e2ba23f325d4"]}

27
deno-src/crypto.ts Normal file
View File

@ -0,0 +1,27 @@
import crypto from "node:crypto";
import fs from "node:fs";
export function computeSha256(filePath: string): Promise<string> {
return new Promise((resolve, reject) => {
const hash = crypto.createHash("sha256");
const fileStream = fs.createReadStream(filePath);
fileStream.on("data", (chunk) => {
hash.update(chunk);
});
fileStream.on("end", () => {
resolve(hash.digest("hex"));
});
fileStream.on("error", (err) => {
reject(err);
});
});
}
export function computeSha256FromText(text: string): string {
const hash = crypto.createHash("sha256");
hash.update(text);
return hash.digest("hex");
}

View File

@ -1,15 +1,19 @@
{
"tasks": {
"dev": "deno run --watch -A --node-modules-dir --allow-scripts main.ts"
},
"imports": {
"@langchain/community": "npm:@langchain/community@^0.3.22",
"@langchain/core": "npm:@langchain/core@^0.3.27",
"@langchain/langgraph": "npm:@langchain/langgraph@^0.2.38",
"@langchain/openai": "npm:@langchain/openai@^0.3.16",
"@langchain/textsplitters": "npm:@langchain/textsplitters@^0.1.0",
"@std/assert": "jsr:@std/assert@1",
"faiss-node": "npm:faiss-node@^0.5.1",
"langchain": "npm:langchain@^0.3.9"
}
"tasks": {
"dev": "deno run --watch -A --node-modules-dir --allow-scripts main.ts"
},
"imports": {
"@kunkun/api": "jsr:@kunkun/api@^0.0.52",
"@langchain/community": "npm:@langchain/community@^0.3.22",
"@langchain/core": "npm:@langchain/core@^0.3.27",
"@langchain/langgraph": "npm:@langchain/langgraph@^0.2.38",
"@langchain/openai": "npm:@langchain/openai@^0.3.16",
"@langchain/textsplitters": "npm:@langchain/textsplitters@^0.1.0",
"pdf-parse": "npm:pdf-parse@^1.1.1",
"@std/assert": "jsr:@std/assert@1",
"valibot": "jsr:@valibot/valibot@^0.42.1",
"faiss-node": "npm:faiss-node@^0.5.1",
"langchain": "npm:langchain@^0.3.12"
},
"nodeModulesDir": "auto"
}

1373
deno-src/deno.lock generated

File diff suppressed because it is too large Load Diff

20
deno-src/dev.ts Normal file
View File

@ -0,0 +1,20 @@
import { FaissStore } from "@langchain/community/vectorstores/faiss";
import { Bucket, embeddings, getDocsFromDirectory } from "./bucket.ts";
import { RecursiveCharacterTextSplitter } from "@langchain/textsplitters";
import { DirectoryLoader } from "langchain/document_loaders/fs/directory";
import {
JSONLoader,
JSONLinesLoader,
} from "langchain/document_loaders/fs/json";
import { TextLoader } from "langchain/document_loaders/fs/text";
import { OpenAIEmbeddings } from "@langchain/openai";
const bucket = new Bucket(
"/Users/hk/Dev/kunkun-extension-repos/kunkun-ext-rag/deno-src/buckets",
"dev"
);
await bucket.init();
// await bucket.addDirectory(
// "/Users/hk/Dev/kunkun-docs/src/content/docs/guides/Extensions/Publish"
// );
// await bucket.addPDF("/Users/hk/Downloads/WACV_2025_Caroline_Huakun__Copy_.pdf");

6
deno-src/index.ts Normal file
View File

@ -0,0 +1,6 @@
import { expose } from "@kunkun/api/runtime/deno";
expose({
})

View File

@ -14,7 +14,7 @@ import {
} from "langchain/document_loaders/fs/json";
import { TextLoader } from "langchain/document_loaders/fs/text";
const embeddings = new OpenAIEmbeddings({
export const embeddings = new OpenAIEmbeddings({
model: "text-embedding-3-large",
});
async function getVectorStore(): Promise<FaissStore> {
@ -23,14 +23,19 @@ async function getVectorStore(): Promise<FaissStore> {
return FaissStore.load("./FaissStore", embeddings);
}
const loader = new DirectoryLoader("/Users/hk/Desktop/rag-ts/datasets", {
".json": (path) => new JSONLoader(path, "/texts"),
".jsonl": (path) => new JSONLinesLoader(path, "/html"),
".txt": (path) => new TextLoader(path),
".md": (path) => new TextLoader(path),
});
const loader = new DirectoryLoader(
"/Users/hk/Dev/kunkun-extension-repos/kunkun-ext-rag/deno-src/buckets",
// "/Users/hk/Dev/kunkun-docs/src/content/docs",
{
".json": (path) => new JSONLoader(path, "/texts"),
".jsonl": (path) => new JSONLinesLoader(path, "/html"),
".txt": (path) => new TextLoader(path),
".md": (path) => new TextLoader(path),
".mdx": (path) => new TextLoader(path),
}
);
const docs = await loader.load();
console.log(docs);
// console.log(docs);
const splitter = new RecursiveCharacterTextSplitter({
chunkSize: 1000,
@ -55,60 +60,60 @@ async function deleteDocuments(vectorStore: FaissStore, ids: string[]) {
const vectorStore = await getVectorStore();
const llm = new ChatOpenAI({
model: "gpt-4o-mini",
temperature: 0,
});
// const llm = new ChatOpenAI({
// model: "gpt-4o-mini",
// temperature: 0,
// });
// Define prompt for question-answering
const promptTemplate = await pull<ChatPromptTemplate>("rlm/rag-prompt");
// // Define prompt for question-answering
// const promptTemplate = await pull<ChatPromptTemplate>("rlm/rag-prompt");
// Define state for application
const InputStateAnnotation = Annotation.Root({
question: Annotation<string>,
});
// // Define state for application
// const InputStateAnnotation = Annotation.Root({
// question: Annotation<string>,
// });
const StateAnnotation = Annotation.Root({
question: Annotation<string>,
context: Annotation<Document[]>,
answer: Annotation<string>,
});
// const StateAnnotation = Annotation.Root({
// question: Annotation<string>,
// context: Annotation<Document[]>,
// answer: Annotation<string>,
// });
// Define application steps
const retrieve = async (state: typeof InputStateAnnotation.State) => {
const retrievedDocs = await vectorStore.similaritySearch(state.question);
return { context: retrievedDocs };
};
// // Define application steps
// const retrieve = async (state: typeof InputStateAnnotation.State) => {
// const retrievedDocs = await vectorStore.similaritySearch(state.question);
// return { context: retrievedDocs };
// };
const generate = async (state: typeof StateAnnotation.State) => {
const docsContent = state.context.map((doc) => doc.pageContent).join("\n");
const messages = await promptTemplate.invoke({
question: state.question,
context: docsContent,
});
const response = await llm.invoke(messages);
return { answer: response.content };
};
// const generate = async (state: typeof StateAnnotation.State) => {
// const docsContent = state.context.map((doc) => doc.pageContent).join("\n");
// const messages = await promptTemplate.invoke({
// question: state.question,
// context: docsContent,
// });
// const response = await llm.invoke(messages);
// return { answer: response.content };
// };
// Compile application and test
const graph = new StateGraph(StateAnnotation)
.addNode("retrieve", retrieve)
.addNode("generate", generate)
.addEdge("__start__", "retrieve")
.addEdge("retrieve", "generate")
.addEdge("generate", "__end__")
.compile();
// // Compile application and test
// const graph = new StateGraph(StateAnnotation)
// .addNode("retrieve", retrieve)
// .addNode("generate", generate)
// .addEdge("__start__", "retrieve")
// .addEdge("retrieve", "generate")
// .addEdge("generate", "__end__")
// .compile();
let inputs = { question: "What is Task Decomposition?" };
// let inputs = { question: "What is Task Decomposition?" };
while (true) {
const question = prompt("Enter your question (or 'exit' to quit): ");
if (!question || question.toLowerCase() === "exit") {
break;
}
// while (true) {
// const question = prompt("Enter your question (or 'exit' to quit): ");
// if (!question || question.toLowerCase() === "exit") {
// break;
// }
const result = await graph.invoke({ question });
console.log("\nAnswer:");
console.log(result.answer);
console.log("\n-------------------\n");
}
// const result = await graph.invoke({ question });
// console.log("\nAnswer:");
// console.log(result.answer);
// console.log("\n-------------------\n");
// }

View File

@ -1,5 +1,6 @@
{
"$schema": "https://schema.kunkun.sh",
"license": "MIT",
"name": "kunkun-ext-rag",
"draft": true,
"version": "0.0.4",
@ -11,7 +12,7 @@
"identifier": "RAG",
"icon": {
"type": "iconify",
"value": "logos:svelte-icon"
"value": "carbon:rag"
},
"demoImages": [],
"permissions": [
@ -23,14 +24,7 @@
"main": "/",
"dist": "build",
"devMain": "http://localhost:5173",
"name": "Sveltekit Template Home Page",
"cmds": []
},
{
"main": "about",
"dist": "build",
"devMain": "http://localhost:5173/about",
"name": "Sveltekit Template About Page",
"name": "RAG",
"cmds": []
}
],
@ -46,13 +40,15 @@
"format": "prettier --write ."
},
"dependencies": {
"@kksh/api": "^0.0.48",
"@kksh/svelte5": "0.1.10",
"@iconify/svelte": "^4.2.0",
"@kksh/api": "^0.0.54",
"@kksh/svelte5": "0.1.15",
"clsx": "^2.1.1",
"lucide-svelte": "^0.460.1",
"mode-watcher": "^0.5.0",
"tailwind-merge": "^2.5.4",
"tailwind-variants": "^0.3.0"
"lucide-svelte": "^0.474.0",
"mode-watcher": "^0.5.1",
"tailwind-merge": "^2.6.0",
"tailwind-variants": "^0.3.1",
"valibot": "^1.0.0-beta.14"
},
"devDependencies": {
"@sveltejs/adapter-auto": "^3.3.1",

1
src/lib/ai.ts Normal file
View File

@ -0,0 +1 @@
// export const constructAiAPIKey = (database: string) => `rag-api-key-${database}`;

View File

@ -0,0 +1,35 @@
<script lang="ts">
import { DBInfo } from '@/models';
import { dbStore } from '@/stores/db';
import { toast } from '@kksh/api/headless';
import { Button, Card } from '@kksh/svelte5';
</script>
{#snippet dbInfoCard(dbInfo: DBInfo)}
<Card.Root>
<Card.Header>
<Card.Title>{dbInfo.name}</Card.Title>
<Card.Description><strong>AI Provider:</strong> {dbInfo.ai}</Card.Description>
</Card.Header>
<Card.Content>
<Button
variant="destructive"
size="lg"
onclick={() =>
dbStore
.deleteById(dbInfo.id)
.then(() => dbStore.load())
.then(() => toast.success('Database deleted'))
.catch((err) => toast.error('Fail to delete database', { description: err.message }))}
>
Delete
</Button>
</Card.Content>
</Card.Root>
{/snippet}
<ul>
{#each $dbStore as db}
{@render dbInfoCard(db)}
{/each}
</ul>

View File

@ -0,0 +1,49 @@
<script lang="ts">
import { ui } from '@kksh/api/ui/iframe';
import { Sidebar } from '@kksh/svelte5';
import Icon from '@iconify/svelte';
import { BotIcon, DatabaseIcon, MessageCircleIcon } from 'lucide-svelte';
import { onMount } from 'svelte';
onMount(() => {
ui.showBackButton('bottom-right');
});
const items = [
{
title: 'Database',
url: '/',
icon: DatabaseIcon
},
{
title: 'Chat',
url: '/chat',
icon: MessageCircleIcon
}
];
</script>
<Sidebar.Root>
<Sidebar.Content>
<Sidebar.Group>
<Sidebar.GroupLabel data-kunkun-drag-region>Menu</Sidebar.GroupLabel>
<Sidebar.GroupContent>
<Sidebar.Menu>
{#each items as item (item.title)}
<Sidebar.MenuItem>
<Sidebar.MenuButton>
{#snippet child({ props })}
<a href={item.url} {...props}>
<!-- <Icon icon={item.icon} /> -->
<item.icon />
<span>{item.title}</span>
</a>
{/snippet}
</Sidebar.MenuButton>
</Sidebar.MenuItem>
{/each}
</Sidebar.Menu>
</Sidebar.GroupContent>
</Sidebar.Group>
</Sidebar.Content>
</Sidebar.Root>

View File

@ -0,0 +1,87 @@
<script lang="ts">
import type { DBInfo } from '@/models';
import { Form, Input, Select } from '@kksh/svelte5';
import SuperDebug, { defaults, superForm } from 'sveltekit-superforms';
import { valibot, valibotClient } from 'sveltekit-superforms/adapters';
import * as v from 'valibot';
let {
class: className,
onSubmit
}: {
class: string;
onSubmit: (data: Omit<DBInfo, 'id'>) => void;
} = $props();
const aiChoices = [{ value: 'openai', label: 'OpenAI' }];
const npmPackageNameFormSchema = v.object({
name: v.pipe(v.string(), v.minLength(1)),
apiKey: v.pipe(v.string(), v.minLength(1)),
ai: v.pipe(v.string(), v.minLength(1))
});
const form = superForm(defaults(valibot(npmPackageNameFormSchema)), {
validators: valibotClient(npmPackageNameFormSchema),
SPA: true,
onUpdate({ form, cancel }) {
if (!form.valid) {
console.log('invalid');
return;
}
onSubmit(form.data);
cancel();
}
});
const { form: formData, enhance, errors } = form;
$formData.ai = 'openai'; // set default value
const triggerContent = $derived(
aiChoices.find((f) => f.value === $formData.ai)?.label ?? 'Select a AI'
);
</script>
<form method="POST" use:enhance class={className}>
<Form.Field {form} name="name">
<Form.Control>
{#snippet children({ props })}
<div class="flex items-center gap-2">
<Input {...props} bind:value={$formData.name} placeholder="Database Name" />
</div>
{/snippet}
</Form.Control>
<Form.FieldErrors />
</Form.Field>
<div class="flex gap-2">
<Form.Field {form} name="ai">
<Form.Control>
{#snippet children({ props })}
<Select.Root type="single" name="favoriteFruit" bind:value={$formData.ai}>
<Select.Trigger class="w-[180px]">
{triggerContent}
</Select.Trigger>
<Select.Content>
<Select.Group>
<Select.GroupHeading>AI Provider</Select.GroupHeading>
{#each aiChoices as ai}
<Select.Item value={ai.value} label={ai.label}>{ai.label}</Select.Item>
{/each}
</Select.Group>
</Select.Content>
</Select.Root>
{/snippet}
</Form.Control>
<Form.FieldErrors />
</Form.Field>
<Form.Field {form} name="apiKey" class="grow">
<Form.Control>
{#snippet children({ props })}
<div class="flex items-center gap-2">
<Input {...props} bind:value={$formData.apiKey} placeholder="OpenAI API Key" />
</div>
{/snippet}
</Form.Control>
<Form.FieldErrors />
</Form.Field>
</div>
<Form.Button class="w-full">Add</Form.Button>
</form>

1
src/lib/constants.ts Normal file
View File

@ -0,0 +1 @@
export const DB_DATATYPE_DATABASE = 'database';

9
src/lib/models.ts Normal file
View File

@ -0,0 +1,9 @@
import * as v from 'valibot';
export const DBInfo = v.object({
id: v.number(),
name: v.string(),
ai: v.string(),
apiKey: v.string()
});
export type DBInfo = v.InferOutput<typeof DBInfo>;

56
src/lib/stores/db.ts Normal file
View File

@ -0,0 +1,56 @@
import { DBInfo } from '@/models';
import { get, writable } from 'svelte/store';
import { db as dbAPI } from '@kksh/api/ui/iframe';
import { DB_DATATYPE_DATABASE } from '@/constants';
import * as v from 'valibot';
import { SearchModeEnum } from '@kksh/api/models';
export const createDbStore = () => {
const databases = writable<DBInfo[]>([]);
return {
...databases,
load() {
return dbAPI
.search({ dataType: DB_DATATYPE_DATABASE, fields: ['data', 'search_text'] })
.then((records) => {
const parsedBuckets = records
.map((rec) => {
if (!rec.data) return null;
const parse = v.safeParse(DBInfo, { id: rec.dataId, ...JSON.parse(rec.data) });
if (parse.success) {
return parse.output;
}
console.error('Invalid database info', rec);
return null;
})
.filter((rec) => rec !== null);
console.log('parsedBuckets', parsedBuckets);
databases.set(parsedBuckets);
});
},
get() {
return get(databases);
},
add(dbInfo: Omit<DBInfo, 'id'>) {
return dbAPI.add({
data: JSON.stringify(dbInfo),
dataType: DB_DATATYPE_DATABASE,
searchText: dbInfo.name
});
},
dbExists(dbName: string) {
return dbAPI.search({
dataType: DB_DATATYPE_DATABASE,
searchText: dbName,
searchMode: SearchModeEnum.ExactMatch
});
},
deleteById(dataId: number) {
return dbAPI.delete(dataId);
}
};
};
export const dbStore = createDbStore();

View File

@ -4,16 +4,29 @@
import { ThemeWrapper, updateTheme } from '@kksh/svelte5';
import { onMount } from 'svelte';
import { ui } from '@kksh/api/ui/iframe';
import { Sidebar } from '@kksh/svelte5';
import AppSidebar from '$lib/components/app-sidebar.svelte';
import { DB_DATATYPE_DATABASE } from '@/constants';
import { dbStore } from '@/stores/db';
let { children } = $props();
onMount(() => {
ui.registerDragRegion();
ui.getTheme().then((theme) => {
updateTheme(theme);
});
dbStore.load();
});
</script>
<ModeWatcher />
<ThemeWrapper>
<slot />
<Sidebar.Provider>
<AppSidebar />
<main class="w-full">
<Sidebar.Trigger />
{@render children?.()}
</main>
</Sidebar.Provider>
</ThemeWrapper>

View File

@ -1,101 +1,28 @@
<script lang="ts">
import { base } from '$app/paths';
import { clipboard, notification, ui, toast } from '@kksh/api/ui/iframe';
import {
ModeToggle,
Button,
Command,
ModeWatcher,
Separator,
ThemeWrapper,
updateTheme
} from '@kksh/svelte5';
import ThemeCustomizer from '$lib/components/ThemeCustomizer.svelte';
import {
Calculator,
Calendar,
CreditCard,
Settings,
SettingsIcon,
Smile,
User
} from 'lucide-svelte';
import { db, ui, kv, toast } from '@kksh/api/ui/iframe';
import AddBucket from '$lib/components/forms/AddBucket.svelte';
import type { DBInfo } from '@/models';
import { onMount } from 'svelte';
import { DB_DATATYPE_DATABASE } from '@/constants';
import { dbStore } from '@/stores/db';
import DatabaseList from '@/components/DatabaseList.svelte';
onMount(() => {
ui.registerDragRegion();
notification.sendNotification('Hello from template-ext-svelte');
ui.getTheme().then((theme) => {
updateTheme(theme);
});
});
let highlighted = '';
let searchTerm = '';
async function onSubmit(data: Omit<DBInfo, 'id'>) {
dbStore
.add(data)
.then(() => {
toast.success('Database added');
return dbStore.load();
})
.catch((err) => {
toast.error('Fail to add database to extension storage', { description: err.message });
});
}
</script>
<ModeWatcher />
<ThemeWrapper>
<Command.Root class="h-screen rounded-lg border shadow-md" bind:value={highlighted}>
<Command.Input placeholder="Type a command or search..." autofocus bind:value={searchTerm} />
<div class="grow">
<Command.List>
<Command.Empty>No results found.</Command.Empty>
<Command.Group heading="Suggestions">
<Command.Item>
<Calendar class="mr-2 h-4 w-4" />
<span>Calendar</span>
</Command.Item>
<Command.Item>
<Smile class="mr-2 h-4 w-4" />
<span>Search Emoji</span>
</Command.Item>
<Command.Item>
<Calculator class="mr-2 h-4 w-4" />
<span>Calculator</span>
</Command.Item>
</Command.Group>
<Command.Separator />
<Command.Group heading="Settings">
<Command.Item>
<User class="mr-2 h-4 w-4" />
<span>Profile</span>
<Command.Shortcut>⌘P</Command.Shortcut>
</Command.Item>
<Command.Item value="billllling">
<CreditCard class="mr-2 h-4 w-4" />
<span>Billing</span>
<Command.Shortcut>⌘B</Command.Shortcut>
</Command.Item>
<Command.Item>
<Settings class="mr-2 h-4 w-4" />
<span>Settings</span>
<Command.Shortcut>⌘S</Command.Shortcut>
</Command.Item>
</Command.Group>
</Command.List>
</div>
<div class="flex items-center justify-between">
<SettingsIcon class="ml-2 h-4 w-4" />
<div class="flex items-center space-x-2">
<Button variant="ghost" size="sm">
Open Application
<kbd class="ml-1"></kbd>
</Button>
<Separator orientation="vertical" />
<a href="{base}/about"><Button>About Page</Button></a>
<Button
onclick={async () => {
toast.success(await clipboard.readText());
}}
>
Read Clipboard
</Button>
<ModeToggle />
<ThemeCustomizer />
</div>
</div>
</Command.Root>
</ThemeWrapper>
<div class="container mx-auto">
<AddBucket class="w-full" {onSubmit} />
<br />
<h1 class="text-2xl font-bold">Databases</h1>
<DatabaseList />
</div>